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Overview

In this supplementary material we provide the following:

– A detailed review of preliminaries involved, including motion field, differen-
tial geometry and event-based normal flow (Sec. I).

– Additional details about differential homography (Sec. II).
– Details of dataset and evaluation metrics utilized (Sec. III).
– Implementation details of the proposed algorithms (Sec. IV).
– More evaluations on the proposed methods, including an analysis of numeri-

cal stability, and the performance of the continuous-time nonlinear solver in
textured scenes. (Sec. V).

I Supplement to Preliminaries

We supplement Sec. 3 of the main paper by providing a detailed review on
three important concepts, including motion field (Sec. I.A), differential geometry
across multiple views (Sec. I.B), and event-based normal flow (Sec. I.C).

I.A Motion Field

Consider a visual observer moving in a static environment, and let its instan-
taneous angular velocity and linear velocity be denoted in the observer’s body
frame as Bω = (ωx, ωy, ωz)

⊤ and Bν = (νx, νy, νz)
⊤, respectively. The scene flow

of a 3D point BP = (X,Y, Z)⊤ is

˙BP = −Bω × BP − Bν . (1)

Let x = (x, y)⊤ = (X/Z, Y/Z)⊤ be the image of P represented in calibrated
camera coordinates. Projecting the scene flow vector onto the image plane gives
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us the relationship between the optical flow u (in calibrated coordinates) and
the dynamics of the observer as

u =
1

Z
A(x) Bν +B(x) Bω , (2)

A(x) =

[
−1 0 x
0 −1 y

]
, (3)

B(x) =

[
xy −(1 + x2) y

(1 + y2) −xy −x

]
, (4)

where (2) is acknowledged as the motion field equation [4]. The depth Z is
different for every pixel x, hence we often write Z = Z(x).

I.B Multi-View Differential Geometry

The theory of differential geometry across multiple views can be derived by tak-
ing the temporal derivatives of the standard multi-view geometry [5]. It examines
the relationship between the optical flow and the instantaneous kinematics across
multiple views. We focus on two specific two-view geometric properties: 1) the
differential homography [10], and 2) the differential epipolar geometry [9].

Differential Homography. The standard homography is a projective transfor-
mation that describes the image motion between two views of a camera observing
a planar scene. Such a mapping function, induced by the planar scene, can be
expressed as

x̂′ = Hx̂, (5)

where x̂ and x̂′ denote the corresponding pixels in terms of homogeneous cal-
ibrated image coordinates, and H ∈ R3×3 is the homography matrix. The in-
duced homography is a function of the relative pose {R, t} and the structure
parameters {N, d} (i.e., parameters of the plane in the scene), and can be ex-
pressed as H .

= R− 1
dtN

⊤. The differential version replaces the potentially large
displacement of the transformation x 7→ x′ by its first-order continuous-time
approximation x 7→ x+∆tû, with point velocity given by:

û(x) =
(
1− x̂e⊤3

)
Hdx̂. (6)

Here, Hd
.
= −

(
[ω]× + 1

dνN
⊤) denotes the differential homography matrix ([·]×

denotes the cross-product, skew-symmetric matrix), e3 = (0, 0, 1)⊤, x̂ = (x, y, 1)⊤,
and û = (ux, uy, 0)

⊤ the optical flow (in homogeneous coordinates).

Differential Epipolar Geometry. As a relatively relaxed constraint compared
to the homography, the standard epipolar geometry only defines a potential di-
rection for searching the correspondence pair x̂ ↔ x̂′. Such a constraint evaluates
the distance between a potential match to the determined epipolar line, and can
be expressed as

x̂′⊤Ex̂ = 0. (7)
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The differential epipolar geometry can be derived similarly, yielding

û(x)⊤[ν]×x̂− x̂⊤sx̂ = 0, (8)

where s = 1
2 ([ν]×[ω]× + [ω]×[ν]×). Note that (8) can be derived directly from

(2) by eliminating the depth information.

I.C Event-Based Normal Flow

Normal Flow. While the motion field is the true projection of the 3D scene
velocities on the image plane, its determination from visual quantities measured
at the image plane is called “optical flow”. The optical flow is the apparent motion
of patterns on the image plane. As is well known, the optical flow can only be a
good approximation for the true motion (i.e., the motion field) at image points
that are unambiguous to track, i.e., that are surrounded by edge patterns that
accurately determine their location in both image plane directions (x and y).
A common assumption that is leveraged to compute optical flow is “brightness
constancy”, that is, the approximation that image brightness remains constant
as the image point x moves. This is an approximation for points corresponding
to matt and Lambertian objects; it is not a sensible assumptions for points on
shiny and specular objects.

Letting I(x, t) be the brightness function on the image plane as a function
of time, the brightness constancy assumption can be compactly written as:

I(x(t), t) = const. (9)

A first-order Taylor expansion gives

I(x+∆x, t+∆t) ≈ I(x, t) + (∇I(x, t))⊤ẋ∆t+ ∂tI(x, t)∆t, (10)

where ẋ ≡ ẋ(t) = (dx/dt, dy/dt)⊤ is the velocity of image point x(t), ∇ =
(∂x, ∂y)

⊤ are the spatial derivatives and ∂t is the temporal derivative. Moving
terms around,

I(x+∆x, t+∆t)− I(x, t) ≈ (∇I(x, t))⊤ẋ∆t+ ∂tI(x, t)∆t. (11)

Brightness constancy states that for the true motion curves x(t), the intensity
remains the same, I(x+∆x, t+∆t) ≈ I(x, t), and therefore (since ∆t > 0)

(∇I(x, t))⊤ẋ+ ∂tI(x, t) ≈ 0. (12)

Assuming that the brightness I is known (i.e., measured by a camera), (12) is
one equation in two unknowns (ẋ ∈ R2). More equations are needed to be able to
determine the velocity ẋ at point (x, t) in space-time. Without additional equa-
tions or information, all that can be determined is the velocity component that
is parallel to ∇I(x, t) (i.e., perpendicular to the edge) due to the dot product



4 Z. Ren et al.

operation. That is, decomposing ẋ = ẋ∥ + ẋ⊥ into its parallel and perpendic-
ular components to the local edge ∇I, respectively, we have ∇I(x, t)⊤ẋ∥ = 0.
Substituting in (12) gives:

0 ≈ (∇I(x, t))⊤
(
ẋ∥ + ẋ⊥

)
+ ∂tI(x, t) (13)

= (∇I(x, t))⊤ẋ∥︸ ︷︷ ︸
0

+(∇I(x, t))⊤ẋ⊥ + ∂tI(x, t) (14)

= (∇I(x, t))⊤ẋ⊥ + ∂tI(x, t) (15)

From here, we can work out n ≡ ẋ⊥ ∝ ∇I. We know that

n ≡ ẋ⊥ = ∥ẋ⊥∥
∇I

∥∇I∥
. (16)

Substituting in (15) (and omitting the evaluation point (x, t), for clarity),

(∇I)⊤∥ẋ⊥∥
∇I

∥∇I∥
= −∂tI, (17)

which gives

∥ẋ⊥∥ = −∂tI
∥∇I∥

(∇I)⊤∇I
= −∂tI

1

∥∇I∥
. (18)

Substituting in (16), it finally gives

n(x, t) = − ∂tI(x, t)

∥∇I(x, t)∥2
∇I(x, t). (19)

This component of the optical flow ẋ(x, t), which is perpendicular to the edge
∇I(x, t), is called normal flow. While (19) is well-known in conventional (frame-
based) computer vision, it is not directly applicable to event cameras because
the latter do not directly provide the means to compute all terms required (the
spatial and temporal derivatives of the brightness). Next, we present how to
compute the normal flow in the case of event cameras.

Computation of Event-based Normal Flow. The output of an event cam-
era is a stream of events, where each event ek

.
= (xk, tk, pk) consists of the

space-time coordinates (xk, tk) at which the intensity change of predefined size
happened and the sign of the change (i.e., polarity pk ∈ {+1,−1}). Following
the definition in [1], we utilize the differential mapping function Σe : R2 → R
that maps the pixel coordinate to the latest event’s timestamp, i.e., x 7→ tlast(x).
Σe is a 2D image, also called a time map; and it is often referred to as time sur-
face (TS) because when interpreting the image as an elevation map, a moving
edge produces events and such points (xk, tlast(xk)) ⊂ R3 approximately form
a surface (ignoring the discrete pixel lattice) [1, 3]. It also goes by the name of
Surface of Active Events (SAE).
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Lemma. Given the mapping function Σe at pixel coordinate x and its finite neigh-
bourhood, the direction of the first-order partial derivative ∇Σe(x) =

∂Σe

∂x (x) is
identical to that of the normal flow at x.

Proof. The directional derivative ∇dΣe(x) can be defined by the dot product of
direction d and ∇Σe(x), as ∇dΣe(x)

.
= d ·∇Σe(x), whose maximum is achieved

when dmax = ∇Σe(x)
∥∇Σe(x)∥ . The direction dmax is proved to be perpendicular to the

level set S .
= {x|Σe(x) = t} which corresponds to the latent edge pixels at time

t. Hence, direction dmax is in parallel to the direction of local image gradient,
namely the normal flow’s direction. □

The lemma demonstrates how to determine the direction of normal flow, but
there is still a unknown scale factor between the magnitude of dmax and that of
the normal flow.

Proposition. Given the mapping function Σe at pixel coordinate x and its finite
neighbourhood, and the first-order partial derivative ∇Σe(x), normal flow n(x)
at pixel x can be calculated by

n(x) =
∇Σe(x)

∥∇Σe(x)∥2
. (20)

Proof. Direction dmax owns the algebra meaning: the maximum time increase
magnitude ∆tmax = dmax · ∇Σe(x) = ∥∇Σe(x)∥ given a unit pixel displacement
(∥dmax∥ = 1). Since the magnitude of the normal flow is equal to the pixel
displacement per unit time, dividing dmax by ∆tmax is the normal flow, i.e.,
n(x) = dmax

∆tmax
= ∇Σe(x)

∥∇Σe(x)∥2 . □

The above normal flow calculation requires the smooth and differentiable
mapping function, we can approximate its partial derivative operator with the
modern image processing techniques such as Sobel filter or local plane fitting. All
above-mentioned geometric elements are illustrated in Fig. 1. Based on this, we
present the normal flow constraint n(x)⊤u(x) = ∥n(x)∥2 for robust estimation
of motion and structure parameters in Sec. 4 of our paper.

II More About Differential Homography

In this section, a detailed explanation to Sec. 4 of our paper is added. In partic-
ular, we first discuss the way to recover the true differential homography from
our linear solution (Sec. II.A). Then, we disclose how to retrieve the motion and
scene parameters by decomposing differential homography (Sec. II.B).

II.A Recover the True Differential Homography from Our Linear
Solution

As is well-known [5,10], Eq. (6) can only recover HL = Hd +ϵI with an unknown
scale ϵ since Hd has a one-dimensional null space. So our linear solver faces this
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Fig. 1: Illustration of event-based normal flow, explained on the spatio-temporal profile
induced by a moving edge. Given a pixel coordinate x, when the increment ∆x’s
direction d equals dmax (dmax is the one that maximizes the directional derivative
∇dΣe(x) = d ·∇Σe(x), i.e., dmax = ∇Σe(x)

∥∇Σe(x)∥ ), it aligns with the direction of the time
surface gradient ∇Σe(x), thereby determining the direction of the normal flow n(x).
Since the time increment (lifetime) corresponding to dmax is ∆tmax = dmax ·∇Σe(x) =

∥∇Σe(x)∥, the normal flow n(x) = dmax
∆tmax

= ∇Σe(x)

∥∇Σe(x)∥2
.

problem too, here we could recover the true differential homography matrix as
follows: after solving for HL, let ML = HL + H⊤

L , then the second largest
eigenvalue of ML equals 2ϵ, which enabling recovery of differential homography
matrix by Hd = HL − ϵI.
Proof. Let

ML = −
(
ν

d
n⊤ + n

ν

d

⊤
)
+ 2ϵI

= −M+ 2ϵI.

(21)

We define the eigenvalue of M as λmax, λmid, λmin with the decreasing order. Ob-
viously M is a symmetric matrix, so according to the Rayleigh quotient theorem,
for any vector {x|x ∈ R3, ∥x∥ = 1} we have

λminx
⊤x ≤ x⊤Mx ≤ λmaxx

⊤x. (22)

For simplicity, we omit d and define a new variable v = ν/d. Taking a vector x
perpendicular to (v + n), and not perpendicular to v and n at the same time,
we can prove that

λminx
⊤x ≤ x⊤ (nv⊤ + vn⊤)x

= x⊤((v + n)(v + n)⊤ − (vv⊤ + nn⊤))x

= −x⊤(vv⊤ + nn⊤)x

= −[(x⊤v)2 + (x⊤n)2] < 0.

(23)
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And we know that the inner product of the vector itself x⊤x is always positive.
We can then conclude that λmin < 0.

Similarly, for another x perpendicular to (v − n), and not perpendicular to
v and n at the same time we can prove that

λmaxx
⊤x ≥ x⊤(nv⊤ + vn⊤)x

= x⊤((vv⊤ + nn⊤)− (v − n)(v − n)⊤)x

= x⊤(vv⊤ + nn⊤)x

= [(x⊤v)2 + (x⊤n)2] > 0.

(24)

Similarly, we can prove that λmax > 0.
For any rank deficient square matrix, its determinant must equal to zero and

there are at least one eigenvalue equals to zero. The rank of the M is less than
two since it contains two outer product of vectors

rank(M) = rank
(
ν

d
n⊤ + n

ν

d

⊤
)

≤ 2. (25)

Besides, λmax > 0 and λmin < 0, we can come to the conclusion that

λmid = 0. (26)

Consequently the second largest value of ML = −M+ 2ϵI equals to 2ϵ. □

II.B Retrieving Motion and Structure Parameters by Decomposing
Differential Homography

After recovering the real differential homography matrix Hd, this section intro-
duces the decomposition method to get the motion and structure parameters.

Firstly, the eigen-decomposition of M can be written as:

M = QΛQ⊤. (27)

where Q = {qmax,qmid,qmin} is the orthogonal matrix which contains all eigen-
vectors of M and diag(Λ) = {λmax, λmid, λmin} which collects all eigenvalues in
the diagonal elements.

We then can define two auxiliary vectors j and k

j =

√
λmax

2
qmax +

√
−λmin

2
qmin,

k =

√
λmax

2
qmax −

√
−λmin

2
qmin,

(28)

such that
M = jk⊤ + kj⊤. (29)

Proof.
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In Sec. II.A, we already concluded that the egienvalues of M have following
properties:

λmax > λmid = 0 > λmin. (30)

Then, we can substitute this result into Eq. (27):

M =
[
qmax qmid qmin

] λmax

0
λmin

qmax
⊤

qmid
⊤

qmin
⊤


= λmaxqmaxqmax

⊤ + λminqminqmin
⊤

=
λmax

2
qmaxqmax

⊤ +
λmax

2
qmaxqmax

⊤+

λmin

2
qminqmin

⊤ +
λmin

2
qminqmin

⊤

= (
λmax

2
qmaxqmax

⊤ +

√
−λminλmax

4
qminqmax

⊤

−
√

−λminλmax

4
qmaxqmin

⊤ − −λmin

2
qminqmin

⊤)

+ (
λmax

2
qmaxqmax

⊤ −
√

−λminλmax

4
qminqmax

⊤

+

√
−λminλmax

4
qmaxqmin

⊤ − −λmin

2
qminqmin

⊤).

(31)

It is easy to prove

jk⊤ =

(
λmax

2
qmaxqmax

⊤ +

√
−λminλmax

4
qminqmax

⊤

−
√

−λminλmax

4
qmaxqmin

⊤ − −λmin

2
qminqmin

⊤

)
,

kj⊤ =

(
λmax

2
qmaxqmax

⊤ −
√

−λminλmax

4
qminqmax

⊤

+

√
−λminλmax

4
qmaxqmin

⊤ − −λmin

2
qminqmin

⊤

)
.

(32)

We then can conclude that M = jk⊤ + kj⊤. □
Since M is a symmetric matrix, we cannot directly distinguish ν/d and n

from each other. Note that n is a normal vector which has a unique norm. We
can thus decompose all candidates as{

1
dν = j∥k∥, n = k/∥k∥, ω = −(Hd + jk⊤)∨

1
dν = k∥j∥, n = j/∥j∥, ω = −(Hd + kj⊤)∨,

(33)
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where the (.)∨ denotes the inverse operator of (.)×, which converts a skew-
symmetric matrix into a vector.

Above all, the decomposition of the differential homography matrix results
in two sets of possible solutions that are indistinguishable in the absence of
prior scene or motion information. However, when integrated with data from
other sensors, this decomposition remains valuable, enabling the estimation of
otherwise unknown motion and scene parameters.

III Dataset and Evaluation Metrics

To supplement Sec. 5 of our paper, we detail our dataset as well as the evaluation
metrics used in the experiments.

III.A Our Dataset

Real Data. For our study on rotational motion estimation, we initially per-
formed experiments using the ECD dataset [7], which was captured using an
event camera [2] with a relatively low spatial resolution (a DAVIS240C with
240×180 px). To assess our proposed algorithm with more modern sensors, we
recorded two similar sequences, ground_rotation and boxed_rotation, using an
event camera (iniVation DAVIS346) with a higher spatial resolution (346×260
px). Additionally, we employ an Xsens Mti-630 IMU to provide ground-truth an-
gular velocity. Fig. 2 offers an insight into the recorded data. Meanwhile, Fig. 3
depicts the ground-truth angular velocity information, featuring high dynamics
of the event camera in each sequence.

Synthetic Data. In the paper, we conduct a comprehensive set of experiments
using a synthetic dataset created with a simulator [8]. This dataset comprises
sequences, including two_wall_translation, patterns_rotation, cubes_rotation,
patterns_6dof, and cubes_6dof, synthesized using an event camera with a spatial
resolution of 640×480 px. Additionally, the simulator provides us with ground
truth data of the optical flow, depth and camera trajectory for each sequence.
All sequences are recorded over a time span of 0.5 seconds under different mo-
tion patterns. Specifically, sequences patterns_6dof and cubes_6dof feature a
combined motion pattern of a linear translation plus a rotation around a certain
axis. In contrast, sequences patterns_rotation and cubes_rotation involve pure
rotation at a constant angular velocity, while sequence two_wall_translation ex-
hibits a pure translation. Figure 4 shows the simulated scenes and the pose of
the camera (represented by an orange wireframe pyramid).

III.B Evaluation Metrics

In the quantitative evaluation, we utilize the average angular velocity error (ew)
and root mean square error (RMSE) to measure the angular velocity estimation
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(a) ground_rotation (b) boxes_rotation

Fig. 2: Event data (represented with a naive accumulation) and corresponding frames
from our data collected using a DAVIS-346 event camera.
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(a) ground_rotation
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(b) boxes_rotation

Fig. 3: Angular velocity measurements from an IMU, used as ground truth.
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(a) cubes_rotation (b) patterns_rotation

Fig. 4: An event camera (orange) capturing different sequences in simulated scenes.

error. The latter is defined as

RMSEω =

√√√√ 1

3m

m∑
i=1

(
e2ωxi

+ e2ωyi
+ e2ωzi

)
. (34)

For linear velocity evaluation, we also evaluate error by means of the average
(ev) and the RMSE, with

RMSEv =

√√√√ 1

3m

m∑
i=1

(
e2vxi + e2vyi + e2vzi

)
. (35)

As for the evaluation metric for the differential homography, we assess the
errors in the estimated differential homography matrix by means of the Frobenius
norm of the difference with respect to the ground truth, rather than directly
comparing motion and structure parameters. This is because it is non-trivial
to determine the correct one from the resulting two-set motion and structure
parameters (see II.B), and it is out of the scope of this paper.

IV Implementation Details

This section provides implementation details to supplement Sec. 5 of the paper.

Normal Flow Extraction. Since our minimal solver is built on normal flow
constraint, the pre-stage normal flow calculation becomes crucial. Here, we di-
rectly calculate gradients from raw event data by local plane fitting [1, 6]. To
further refine these calculations, RANSAC is applied. Ultimately, we employ
(20) to accurately determine the partial normal flow.

Linear Solver. From the event batch, we extracted numerous partial normal
flow constraints, which enabled us to construct an overdetermined system of
equations. However, the estimated normal flow is still subject to noise due to
the limitations of existing methods. To address this, we employed RANSAC for
robust sampling.
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Hyper-Parameter Settings. Parameters including window size and threshold
can have a crucial influence on the performance of each solver, which therefore
needs clarification. Here, we have configured the spatial and temporal window
sizes for normal flow extraction at 7px×7px×0.04s, respectively. Additionally, the
RANSAC threshold of plane fitting is set to 10−5, while the RANSAC threshold
of linear solver is established at 10−4.

V Additional Results

To further investigate and discuss the performance of our solver, we conduct
some extensive experiments to supplement Sec. 5 of the paper.
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(a) Optical Flow
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(c) Rotational Motion
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Fig. 5: Numerical stability analysis on the tasks of optical flow, depth estimation,
rotational motion estimation, differential homography, and 6-DoF motion tracking,
respectively.

V.A Numerical Stability Analysis

We conduct the numerical stability analysis of the linear solver in the five prob-
lems tackled: 1) Optical flow estimation, 2) Depth estimation, 3) Rotational
estimation, 4) Differential homography estimation, and 5) 6-DoF motion track-
ing. We gradually increase the noise level from 0.01 px to 100 px on the normal
flow observations, and assess how sensitive the linear solver is in each problem.

As shown in Fig. 5, for optical flow estimation, the error increases with the
noise level and the linear solver can estimate optical flow under 1-pixel error
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Fig. 6: Results of the continuous-time angular velocity estimator on sequence dy-
namic_rotation.

in normal flow observation. Also, the linear solver can estimate depth with high
accuracy under the same noise level. For tasks involving rotation, differential ho-
mography, and 6-DoF motion estimation, the linear solver demonstrates greater
resilience, effectively functioning under more severe noise conditions. In general,
accurate results are witnessed in all five problems under a noise level of 1 pixel,
thereby substantiating the robustness of our linear solver.

V.B Continuous-Time Nonlinear Solver

The experiments on sequence shapes_rotation from the dataset [7] have already
demonstrated the superiority of the continuous-time nonlinear solver in han-
dling aggressive motion. However, the relatively simple texture of this sequence
raises questions about the solver’s performance in more complex visual envi-
ronments. To address this, we conduct an additional experiment on sequence
dynamic_rotation, also from the dataset [7], which features a more natural and
higher textured scene. The results, illustrated in Fig. 6, confirm the solver’s
capability to perform accurately in everyday-textured scenes, indicating its ro-
bustness across diverse scene complexities.
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